Text Classification Using Lattice Machine

نویسندگان

  • Hui Wang
  • Hung Son Nguyen
چکیده

A novel approach to supervised learning, called Lattice Machine , was proposed in 5]. In the Lattice Machine, it was assumed that data are structured as relations. In this paper we investigate the application of the Lattice Machine in the area of text classiication, where textual data are unstructured. We represent a set of textual documents as a collection of Boolean feature vectors, where each vector corresponds to one document and each entry in a tuple indicates whether a particular term appears in the document. This is a common representation of textual documents. We show that using this representation, the Lattice Machine's operations are simply set theoretic operations. In particular, the lattice sum operation is simply set intersection and the ordering relationship is simply set inclusion. Experiments show that the Lattice Machine , under this connguration, is quite competitive with state-of-the-art learning algorithms for text classiication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA

With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...

متن کامل

A Concept Lattice-Based Kernel for SVM Text Classification

Standard Support Vector Machines (SVM) text classification relies on bag-of-words kernel to express the similarity between documents. We show that a document lattice can be used to define a valid kernel function that takes into account the relations between different terms. Such a kernel is based on the notion of conceptual proximity between pairs of terms, as encoded in the document lattice. W...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999